

A semi-analytical solution for forced vibrations response of rectangular orthotropic plates with various boundary conditions[†]

Rahbar Ranji A.1,* and Rostami Hoseynabadi H.2

¹Department of Naval Architecture, Amirkabir University of Technology, Tehran 15914, Iran ²Department of marine engineering, Malek Ashtar University of Technology, Isfahan, Iran

(Manuscript Received May 25, 2009; Revised July 7, 2009; Accepted July 25, 2009)

Abstract

Orthotropic plates form an essential part of many marine, aerospace, and automobile structures. The recent increase in the use of composite materials for plate-type structures intensified the need for solutions utilizing orthotropic plates. These structural components, in many instances, are subjected to vibration. The main purpose of this paper is to present a semi-analytical analysis of the response of orthotropic plates to forced vibrations with different combinations of boundary conditions subjected to a general distributed excitation. The solution of the partial differential equation was reduced to an iterative sequential solution of ordinary differential equations using extended Kantorovich method. The efficiency and accuracy of the proposed method were examined through comparison with available literature and was in good agreement with them.

Keywords: Extended Kantorovich method; Forced vibrations; Orthotropic plates

1. Introduction

Rectangular plates have wide applications in civil, mechanical, aeronautical, and marine structures. Engineers often use orthotropic rectangular plates when finding solving their work predicaments. In architectural engineering, for instance, reinforced-concrete slabs with one- or two-way joists are used for floor systems in buildings. In civil engineering, highway bridge decks usually consist of plates stiffened with rectangular, triangular, or trapezoidal ribs. The use of stiffened plates is especially indispensable in ship and aerospace structures; the hull, deck, bottom and superstructure of a ship could be considered as orthotropic plates. Similarly, in flight structures, the wings and fuselage consist of skin with an array of stiffening ribs.

Among its various aspects, vibrations have drawn much attention in terms of the structural performance of orthotropic plates. In many instances an orthotropic plate should support a motor, which involve the consideration of dynamic disturbances produced by time-dependent external forces. The objective of this study is to determine the effect of vibration, and investigate the vibration characteristics of orthotropic plates, in order to develop accurate and reliable designs.

E-mail address: rahbar@aut.ac.ir

Closed-form solutions of dynamic responses of plates were presented mainly for a few edge boundary conditions, such as those simply supported at four edges (Navier-type solutions) or at parallel edges (Levy-type solutions) [1]. These methods can be extended to orthotropic plates [2]. For other types of boundary conditions, many efforts were devoted to develop approximate methods, such as the Rayleigh-Ritz method [3, 4], superposition method [5, 6], Green's function method [7], Lagrangian multiplier technique [8], and the finite element method [9].

In spite of its importance in terms of applicability to real structures, the number of studies that focused on the forced vibration analysis of orthotropic plates is relatively limited. Similarly, in all these studies, as well as in many others, the influences of general loading and boundary conditions were not accounted for. Numerical methods, such as finite element method (FEM), needs much effort in modeling the geometry and in applying the general load, which sometimes are not needed especially in the early stage of the design process. In these cases, an approximate, quick, and easy-to-apply solution is beneficial.

A very efficient approximate closed-form solution is the socalled Extended Kantorovich Method (EKM) which was introduced by Kerr [10]. The Kantorovich method [11], which reduces partial differential equation to ordinary differential equations (ODE), was extended by Jones and Milne [12], and Bhat et al. [13] to study the free vibration of isotropic rectan-

 $^{^{\}dagger}$ This paper was recommended for publication in revised form by Associate Editor Seockhyun Kim

^{*}Corresponding author. Tel.: +98 216 454 3114, Fax.: +98 216 641 2495

[©] KSME & Springer 2010

gular plates. Dalaei and Kerr [14], and Bercin [15] used the method as reference [12] to obtain natural frequencies of fully clamped orthotropic thin plates. Sakata et al. [16] applied the method as reference [13] to the vibration analysis of rectangular orthotropic plates.

The main purpose of the present work is to demonstrate an efficient and accurate application of the EKM for the forced vibration analysis of orthotropic rectangular plates with arbitrary boundary conditions under a general type of non-uniform distributed dynamic excitation. In this paper, dynamic displacement and bending moment amplitudes were determined. A thorough comparison with the available published results is presented for different cases with good agreement was observed.

2. Basic equations and boundary conditions

2.1 Governing equations

The plate and coordinate system are shown in Fig. 1.

An orthotropic material is characterized by the fact that the mechanical elastic properties have two perpendicular planes of symmetry, and the four elastic constants E_1 , E_2 , G, v_1 are independent. E_1 and E_2 are Young's modulus, v_1 and v_2 are the corresponding Poisson ratios in these directions, and G is the shear modulus. The coefficient v_2 can be determined from:

$$\frac{\upsilon_1}{E_1} = \frac{\upsilon_2}{E_2} \tag{1}$$

Orthotropic bending stiffness parameters are defined as:

$$D_{1} = \frac{E_{1}h^{3}}{12(1-\upsilon_{1}\upsilon_{2})}, \quad D_{2} = \frac{E_{2}h^{3}}{12(1-\upsilon_{1}\upsilon_{2})}$$
$$D_{t} = \frac{Gh^{3}}{12}, \quad D_{3} = \upsilon_{1}D_{2} + 2D_{t} = \upsilon_{2}D_{1} + 2D_{t}$$
(2)

where h is the plate thickness. The governing differential equation for the forced vibration of orthotropic thin plate [2] is:

Fig. 1. Geometry of the plate.

$$D_{1} \frac{\partial^{4} w(x, y, t)}{\partial x^{4}} + 2D_{3} \frac{\partial^{4} w(x, y, t)}{\partial x^{2} \partial y^{2}} + D_{2} \frac{\partial^{4} w(x, y, t)}{\partial y^{4}} + \rho h \frac{\partial^{2} w(x, y, t)}{\partial t^{2}} = p_{z}(x, y, t)$$
(3)

where ρ is the mass density of the material per unit volume and p_z is the excitation force, which is expressed as:

$$p_z(x, y, t) = q(x, y)e^{i\omega t}$$
(4)

The deflection of plate is written as:

$$w(x, y, t) = W(x, y)e^{i\omega t}$$
(5)

The boundary conditions of the plate are

$$x = cons$$

Simply supported (S)
$$w = \frac{\partial^2 w}{\partial x^2} = 0$$

Clamped (C) $w = \frac{\partial w}{\partial x} = 0$
 $y = cons$
Simply supported (S) $w = \frac{\partial^2 w}{\partial y^2} = 0$

Clamped (C)
$$w = \frac{\partial w}{\partial y} = 0$$
 (6)

2.2 Application of the EKM

According to the extended Kantorovich method, deflection surface of the vibrating plate can be separated into two uncoupled function as:

$$w(x, y, t) = W(x, y)e^{i\omega t} = \xi(x)\psi(y)e^{i\omega t}$$
(7)

Here, $\xi(x)$ and $\psi(y)$ are the unknown functions of *x* and *y* is yet to be determined. The boundary conditions in the form of Eq. (7) can be written as

$$x = cons$$

Simply supported (S) $\xi = \frac{d^2 \xi}{dx^2} = 0$
Clamped (C) $\xi = \frac{d\xi}{dx} = 0$
 $y = cons$
Simply supported (S) $\psi = \frac{d^2 \psi}{dy^2} = 0$
Clamped (C) $\psi = \frac{d\psi}{dy} = 0$ (8)

Substituting Eq. (7) into Eq. (3) yields the new form of governing equation in terms of separable functions:

$$D_{1}\psi \frac{d^{4}\xi}{dx^{4}} + 2D_{3}\frac{d^{2}\xi}{dx^{2}}\frac{d^{2}\psi}{dy^{2}} + D_{2}\xi \frac{d^{4}\psi}{dy^{4}} - \xi\psi\rho h\omega^{2} = q(x,y)$$
(9)

Based on the general procedure of the Galerkin technique, multiplying Eq. (9) by the appropriate weighting function, ψ , and then assuming a prescribed function as an initial guess, and integrating over the entire length of the plate in the direction y leads to the first set of ODE as

$$F_1 \frac{d^4 \xi}{dx^4} - 2F_2 \frac{d^2 \xi}{dx^2} + F_3 \xi = B$$
(10)

When the weighting function is ξ , in the same way, and with integration over the entire length of the plate in the *x* direction, the second set of ODE are obtained from

$$G_1 \frac{d^4 \psi}{dy^4} - 2G_2 \frac{d^2 \psi}{dy^2} + G_3 \psi = I$$
(11)

The values of *B*, *I*, *F*'s and *G*'s are specified as:

$$F_{1} = \int_{0}^{b} D_{1}\psi^{2} dy, \quad G_{1} = \int_{0}^{l} D_{2}\xi^{2} dx$$

$$F_{2} = \int_{0}^{b} D_{3} (\frac{d\psi}{dy})^{2} dy, \quad G_{2} = \int_{0}^{l} D_{3} (\frac{d\xi}{dx})^{2} dx$$

$$F_{3} = \int_{0}^{b} [D_{2} (\frac{d^{2}\psi}{dy^{2}})^{2} - \rho h \omega^{2} \psi^{2}] dy$$

$$G_{3} = \int_{0}^{l} [D_{1} (\frac{d^{2}\xi}{dx^{2}})^{2} - \rho h \omega^{2} \xi^{2}] dx$$

$$B = \int_{0}^{b} q(x, y) \psi dy, \quad I = \int_{0}^{l} q(x, y) \xi dx \quad (12)$$

In summary, any arbitrary function for $\psi(y)$ was assumed as initial guess. Solving Eq. (10) gives first approximation of $\xi(x)$, and all constants in Eq. (11). Equation (11) leads to first approximation of $\psi(y)$. It can be seen that the first iteration is completed. Using the same iteration procedure, final form of functions $\psi(y)$ and $\xi(x)$ could be obtained.

3. Closed form solutions

In all iterations, for both ODEs (10) and (11) exact closed form solutions [17] can be expressed as:

$$\xi = \sum_{i=1}^{4} A_i \exp(\lambda_i x) + \xi_p$$

$$\psi = \sum_{i=1}^{4} B_i \exp(\mu_i y) + \psi_p$$
 (13)

The first term in Eq. (13) is the general solution, and the

second term is the particular solution. λ_i and $\mu_i(i=1, ..., 4)$ are roots of the following characteristic equations,

$$F_1 \lambda^4 - 2F_2 \lambda^2 + F_3 = 0$$

$$G_1 \mu^4 - 2G_2 \mu^2 + G_3 = 0$$
(14)

3.1 Boundary conditions

The constants A_i and B_i (Eq. (13)) could be found based on the boundary conditions. For some cases, the computations are as follows:

All edges clamped

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ \lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4} \\ e^{\lambda_{1}l} & e^{\lambda_{2}l} & e^{\lambda_{3}l} & e^{\lambda_{4}l} \\ \lambda_{1}e^{\lambda_{1}l} & \lambda_{2}e^{\lambda_{2}l} & \lambda_{3}e^{\lambda_{3}l} & \lambda_{4}e^{\lambda_{4}l} \end{bmatrix} \begin{pmatrix} A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \end{pmatrix} = \begin{bmatrix} -\zeta_{p}(0) \\ -\frac{d\zeta_{p}}{dx}(0) \\ -\zeta_{p}(l) \\ -\zeta_{p}(l) \\ -\frac{d\zeta_{p}}{dx}(l) \end{pmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ \mu_{1} & \mu_{2} & \mu_{3} & \mu_{4} \\ e^{\mu_{1}b} & e^{\mu_{2}b} & e^{\mu_{3}b} & e^{\mu_{4}b} \\ \mu_{1}e^{\mu_{1}b} & \mu_{2}e^{\mu_{2}b} & \mu_{3}e^{\mu_{3}b} & \mu_{4}e^{\mu_{4}b} \end{bmatrix} \begin{pmatrix} B_{1} \\ B_{2} \\ B_{3} \\ B_{4} \end{pmatrix} = \begin{bmatrix} -\psi_{p}(0) \\ -\frac{d\psi_{p}}{dy}(0) \\ -\psi_{p}(l) \\ -\frac{d\psi_{p}}{dy}(l) \end{pmatrix}$$
(15)

Combination of clamped and simply supported edges

To increase the applicability of this method, the SCCC, SSCC, SCSC, and CSSS boundary conditions are also considered. For example, the values of A_i and B_i for SSCC are as:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} \\ e^{\lambda_{1}l} & e^{\lambda_{2}l} & e^{\lambda_{3}l} & e^{\lambda_{4}l} \\ \lambda_{1}e^{\lambda_{1}l} & \lambda_{2}e^{\lambda_{2}l} & \lambda_{3}e^{\lambda_{3}l} & \lambda_{4}e^{\lambda_{4}l} \end{bmatrix} \begin{pmatrix} A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \end{pmatrix} = \begin{pmatrix} -\xi_{p}(0) \\ -\frac{d^{2}\xi_{p}}{dx^{2}}(0) \\ -\xi_{p}(l) \\ -\frac{d\xi_{p}}{dx}(l) \end{pmatrix}$$
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ \mu_{1}^{2} & \mu_{2}^{2} & \mu_{3}^{2} & \mu_{4}^{2} \\ e^{\mu_{0}b} & e^{\mu_{2}b} & e^{\mu_{0}b} & e^{\mu_{4}b} \\ \mu_{1}e^{\mu_{1}b} & \mu_{2}e^{\mu_{2}b} & \mu_{3}e^{\mu_{3}b} & \mu_{4}e^{\mu_{4}b} \end{bmatrix} \begin{pmatrix} B_{1} \\ B_{2} \\ B_{3} \\ B_{4} \end{pmatrix} = \begin{pmatrix} -\psi_{p}(0) \\ -\frac{d^{2}\psi_{p}}{dy^{2}}(0) \\ -\psi_{p}(l) \\ -\frac{d\psi_{p}}{dy}(l) \end{pmatrix}$$
(16)

3.2. Loading

Particular solutions of ODEs depend on the type of loading. For a general lateral dynamic load in the form of

$$p_{z}(x, y, t) = q(x, y)e^{i\omega t} = q_{0}XTe^{k_{1}x+k_{2}y}e^{i\omega t}$$
(17)

in which

8 (0))

$$X = mx^4 + nx^3 + ox^2 + px + l$$

T = Sin(ry) or T = Cos(ry)

and m, n, o, p, l, r, k_1 , and k_2 are arbitrary constants, particular solutions can be determined using the relation

$$\begin{aligned} \xi_{p} &= e^{k_{1}x} B_{1} \sum_{i=1}^{5} U_{i} \Gamma_{i} ,\\ \Gamma_{i} &= \frac{d^{i-1}}{dx^{i-1}} (X) \quad (i = 1, 2, ..., 5) \\ \psi_{p} &= \frac{e^{k_{2}y} I_{1}}{J_{i}^{2} + (rJ_{2})^{2}} \sum_{i=1}^{2} (-1)^{i-1} J_{i} \Phi_{i} ,\\ \Phi_{i} &= \frac{d^{i-1}}{d\theta^{i-1}} (T) \quad (i = 1, 2) \end{aligned}$$
(18)

where B_l , I_l , U's and J's are:

$$B_{1} = \int_{0}^{\alpha} q_{0} T e^{k_{2}y} dy, \quad I_{1} = \int_{0}^{l} q_{0} X e^{k_{1}x} dx$$

$$U_{1} = \frac{1}{S_{1}}, \quad U_{2} = \frac{S_{2}}{S_{1}^{2}}$$

$$U_{3} = \frac{1}{S_{1}^{3}} (S_{2}^{2} - S_{1}S_{3})$$

$$U_{4} = \frac{1}{S_{1}^{4}} (-S_{2}^{3} + 2S_{1}S_{2}S_{3} - S_{1}^{2}S_{4})$$

$$U_{5} = \frac{1}{S_{1}^{5}} (S_{2}^{4} - 3S_{1}S_{2}^{2}S_{3} + S_{1}^{2}S_{3}^{2} + 2S_{1}^{2}S_{2}S_{4} - S_{1}^{3}S_{5})$$

$$J_{1} = (r^{4} - 6k_{2}^{2}r^{2} + k_{2}^{4})G_{1} + (2r^{2} - 2k_{2}^{2})G_{2} + G_{3}$$

$$J_{2} = (-4k_{2}r^{2} + 4k_{2}^{3})G_{1} - 4k_{2}G_{2}$$
(19)

Fig. 2. Flowchart of procedure for the vibration analysis of orthotropic plates by EKM.

Furthermore, S's are defined as:

$$S_{1} = F_{1}k_{1}^{4} - 2F_{2}k_{1}^{2} + F_{3}, \quad S_{2} = 4F_{1}k_{1}^{3} - 4F_{2}k_{1}$$

$$S_{3} = 6F_{1}k_{1}^{2} - 2F_{2}, \quad S_{4} = 4F_{1}k_{1}$$

$$S_{5} = F_{1}$$
(20)

4. Results and discussions

Flowchart of the abovementioned procedure is shown in Fig. 2. A computer code in MATLAB is developed, which can be used for the vibration analysis of isotropic and orthotropic rectangular plates with different boundary conditions and general loading.

In the calculation, the first step is to assume an arbitrary function for $\psi(y)$. In contrast to other weighted residual methods, it does not need to satisfy boundary conditions since it will be satisfied in following iterations. Here the following form is used:

$$\psi = (y^2 - b^2)^2 \tag{21}$$

To demonstrate the applicability of the method, the different cases for isotropic plates ($\nu = 0.3$) and orthotropic plates with constants

$$D_2/D_1 = 0.5$$
, $D_t/D_1 = 1/3$, $v_2 = 0.3$

were solved for the following excitation loads.

Excitation loads, $q = q_0 Cos(\omega t)$

Tables 1 to 3 depict the non-dimensional displacement and bending moment amplitudes at the center of an isotropic simply-supported rectangular plate for several values of the aspect ratios. The results are compared with Romanelli and Laura [18].

Table 1. Non-dimensional deflection and bending moment, isotropic simply-supported plate (b/a = 1).

$\frac{\Omega}{\Omega_1}$		$rac{Dw}{q_0 l^4} imes 10^2$	$rac{M}{q_0 l^2} imes 10^2$
0	[22]	0.4062	4.7886
	EKM	0.4058	4.7527
0.1	[22]	0.4104	4.8423
	EKM	0.4100	4.8063
0.3	[22]	0.4473	5.3142
	EKM	0.4469	5.2778
0.5	[22]	0.5448	6.5613
	EKM	0.5444	6.5242
0.7	[22]	0.8058	9.9041
	EKM	0.8054	9.8659
0.9	[22]	2.1796	27.524
	EKM	2.1792	27.4844
1.1	[22]	1.9916	26.004
	EKM	1.9921	26.046

Table 2. Non-dimensional deflection and bending moment, isotropic simply-supported plate (b/a = 1.5).

$rac{\Omega}{\Omega_1}$		$\frac{Dw}{q_0 l^4} \times 10^2$	$\frac{M_x}{q_0 l^2} \times 10^2$	$\frac{M_y}{q_0 l^2} \times 10^2$
0	[22]	0.7724	8.1160	4.9843
	EKM	0.7716	8.0564	4.9488
0.1	[22]	0.7804	8.2056	5.0427
	EKM	0.7797	8.1459	5.0072
0.3	[22]	0.8511	8.9938	5.5567
	EKM	0.8503	8.9334	5.5208
0.5	[22]	1.0378	11.077	6.9177
	EKM	1.0370	11.0153	6.8807
0.7	[22]	1.5378	16.663	10.575
	EKM	1.5370	16.599	10.536
0.9	[22]	4.1713	46.360	29.901
	EKM	4.1705	46.042	29.860
1.1	[22]	3.8263	43.360	28.891
	EKM	3.8271	43.432	28.934

Table 3. Non-dimensional deflection and bending moment, isotropic simply-supported plate (, b/a = 2).

$rac{\Omega}{\Omega_1}$		$rac{Dw}{q_0 l^4} imes 10^2$	8×10 ²	$\frac{M_y}{q_0 l^2} \times 10^2$
0	[22]	1.0129	10.168	4.6350
	EKM	1.0119	10.099	4.6041
0.1	[22]	1.0235	10.281	4.6916
	EKM	1.0226	10.212	4.6606
0.3	[22]	1.1175	11.274	5.1898
	EKM	1.1165	11.203	5.1581
0.5	[22]	1.3659	13.901	6.5136
	EKM	1.3649	13.828	6.4807
0.7	[22]	2.0322	20.956	10.091
	EKM	2.0312	20.879	10.056
0.9	[22]	5.5466	58.224	29.111
	EKM	5.5456	58.142	29.073
1.1	[22]	5.1356	55.140	28.957
	EKM	5.1367	55.229	28.998

Table 4. Non-dimensional deflection and bending moment, isotropic simply-supported plate.

$\frac{b}{a}$		$\frac{Dw}{q_0 l^4} \times 10^2$	$\frac{M_x}{q_0 l^2} \times 10^2$	$\frac{M_y}{q_0 l^2} \times 10^2$
1	FEM [23]	0.406	4.790	4.790
	Analytical [23]	0.408	4.944	4.944
	EKM	0.4058	4.7527	4.7527
1.5	FEM [23]	0.772	8.118	4.985
	Analytical [23]	0.778	8.310	5.229
	EKM	0.7716	8.0564	4.9488
2	FEM [23]	1.013	10.117	4.635
	Analytical [23]	1.023	10.385	4.897
	EKM	1.0129	10.099	4.6041

In Tables 4 to 6, the static solution ($\omega = 0$) for a similar case with three different boundary conditions and aspect ratios were given. The results are in very good agreement with the

Table 5. Non-dimensional deflection and bending moment, isotropic SCSC plate.

$\frac{b}{a}$		$rac{Dw}{q_0 l^4} imes 10^2$	$\frac{M_x}{q_0 l^2} \times 10^2$	$\frac{M_y}{q_0 l^2} \times 10^2$
	FEM [23]	0.192	2.440	3.327
1	Analytical [23]	0.193	2.571	3.380
	EKM	0.1913	2.3983	3.2722
	FEM [23]	0.533	5.850	4.596
1.5	Analytical [23]	0.533	5.949	4.584
	EKM	0.5318	5.7793	4.5455
	FEM [23]	0.844	8.690	4.737
2	Analytical [23]	0.842	8.694	4.602
	EKM	0.8434	8.605	4.6953

Table 6. Non-dimensional deflection and bending moment, isotropic clamped plate.

$\frac{b}{a}$		$rac{Dw}{q_0 l^4} imes 10^2$	$\frac{M_x}{q_0 l^2} \times 10^2$	$\frac{M_y}{q_0 l^2} \times 10^2$
1	FEM [23]	0.126	2.292	2.292
	Analytical [23]	0.126	2.280	2.280
	EKM	0.1264	2.2630	2.263
1.5	FEM [23]	0.220	3.681	2.027
	Analytical [23]	0.219	3.659	1.973
	EKM	0.2192	3.6183	1.9928
2	FEM [23]	0.253	4.120	1.581
	Analytical [23]	0.250	4.045	1.431
	EKM	0.2525	4.032	1.5445

Table 7. Non-dimensional deflection and bending moment, orthotropic simply-supported plate (b/a = 1).

$rac{\Omega}{\Omega_1}$		$\frac{Dw}{q_0 l^4} \times 10^2$	$\frac{M_x}{q_0 l^2} \times 10^2$	$\frac{M_y}{q_0 l^2} \times 10^2$
0	[22]	0.4714	5.5558	3.3462
	EKM	0.4709	5.5155	3.3222
0.1	[22]	0.4763	5.6182	3.3846
	EKM	0.4758	5.5780	3.3605
0.3	[22]	0.5193	6.1676	3.7220
	EKM	0.5188	6.1268	3.6976
0.5	[22]	0.6328	7.6198	4.6143
	EKM	0.6323	7.5878	4.5892
0.7	[22]	0.9368	11.513	7.0081
	EKM	0.9363	11.4696	6.9820
0.9	[22]	2.5373	32.040	19.637
	EKM	2.5367	31.9933	19.6089
1.1	[22]	2.3225	32.040	19.637
	EKM	2.3231	30.3751	18.7755

literature [19]. A comparison between the present study with literature [18] for non-dimensional displacement and bending moments at center of an orthotropic simply-supported plate is shown in Tables 7 to 9. As it can be seen both results are much close.

Table 8. Non-dimensional deflection and bending moment, orthotropic simply-supported plate (b/a = 1.5).

$\frac{\Omega}{\Omega_1}$		$\frac{Dw}{q_0 l^4} \times 10^2$	$\frac{M_x}{q_0 l^2} \times 10^2$	$\frac{M_y}{q_0 l^2} \times 10^2$
0	[22]	0.8151	8.5162	3.6729
	EKM	0.8144	8.4570	3.6477
0.1	[22]	0.8237	8.6113	3.7163
	EKM	0.8230	8.5520	3.6911
0.3	[22]	0.8988	9.4482	4.0983
	EKM	0.8981	9.3879	4.0726
0.5	[22]	1.0974	11.662	5.1108
	EKM	1.0967	11.600	5.0842
0.7	[22]	1.6297	17.603	7.8370
	EKM	1.6290	17.538	7.8088
0.9	[22]	4.4352	48.966	22.271
	EKM	4.4344	48.900	22.242
1.1	[22]	4.0878	46.392	21.691
	EKM	4.0886	46.466	21.723

Table 9. Non-dimensional deflection and bending moment, orthotropic simply-supported plate (b/a = 2).

$\frac{\Omega}{\Omega_1}$		$\frac{Dw}{q_0 l^4} \times 10^2$	$\frac{M_x}{q_0 l^2} \times 10^2$	$\frac{M_y}{q_0 l^2} \times 10^2$
0	[22]	1.0318	10.309	3.7426
	EKM	1.0309	10.243	3.7187
0.1	[22]	1.0428	10.424	3.7874
	EKM	1.0418	10.358	3.7632
0.3	[22]	1.1393	11.441	4.1821
	EKM	1.1379	11.370	4.1558
0.5	[22]	1.3946	14.137	5.2319
	EKM	1.3920	14.049	5.1993
0.7	[22]	2.0804	21.391	9.0738
	EKM	2.0724	21.241	8.0172
0.9	[22]	5.7036	59.798	23.219
	EKM	5.6207	58.848	22.846
1.1	[22]	5.3204	57.213	23.100
	EKM	5.4248	58.401	23.566

Excitation loads $q = q_0(x^4 + x^3 + x^2 + x + 1)Sin(5y)Cos(\omega t)$

In this example, an orthotropic clamped plate with aspect ratio of 1.5 was considered. Non-dimensional deflection $(w^* = D_1w/q_0l^4)$ and bending moments $(M^* = M/q_0l^2)$ of the plate along the centerlines (l/2, y) and (x, b/2) are presented in Figs. 3 to 8.

In the other case, the same type of plate as the previous example is applied. For the case of SSCC boundary conditions, non-dimensional deflection (w^*) and bending moments (M^*) of the plate along the centerlines (l/2, y) and (x, b/2) are depicted as Figs. 9 to 14.

In the tables and figures, Ω is the frequency parameter and is defined as the following:

For isotropic:
$$\Omega = \omega a^2 \sqrt{\rho h/D}$$

For orthotropic: $\Omega = \omega a^2 \sqrt{\rho h/D_1}$ (22)

Fig. 3. Non-dimensional deflection (w^*) of a clamped plate along centerline (l/2, y).

Fig. 4. Non-dimensional bending moment (M_x^*) of a clamped plate along centerline (l/2, y).

Fig. 5. Non-dimensional bending moment (M_y^*) of a clamped plate along centerline (l/2, y).

Fig. 6. Non-dimensional deflection (w^*) of a clamped plate along centerline (x, b/2).

Fig. 9. Non-dimensional deflection (w^*) of SSCC plate along centerline (l/2, y).

Fig. 12. Non-dimensional deflection (w^*) of SSCC plate along centerline (x, b/2).

Fig. 7. Non-dimensional bending moment (M_x^*) Fig. 8. Non-dimensional bending moment of a clamped plate along centerline (x, b/2). (M_y^*) of a clamped plate along centerline(x, b/2).

0.03 0.03

-0.0

-0.0

-0.0

ling

Fig. 10. Non-dimensional bending moment (M_x^*) of SSCC plate along centerline (l/2, y).

Fig. 13. Non-dimensional bending moment (M_x^*) of SSCC plate along centerline (x, b/2).

Fig. 14. Non-dimensional bending moment (M_v^*) of SSCC plate along centerline (x, b/2).

0.4

Ω/Ω_=0

Ω/Ω₁=0

- Ω/Ω₁=0.0

Ω/Ω_=0.8

0.8

0.5 x/l

5. Concluding remarks

The extended Kantorovich method is successfully applied to obtain highly accurate approximations of the closed-form solution for the forced vibration analysis of orthotropic rectangular plates.

The boundary conditions of the plate can be any combination of simply-supported and clamped edge. In this analysis, the plate is subjected to a general non-uniform distributed dynamic load. Application of EKM to the system of partial differential equations reduces the governing equations of the problem to a double set of ordinary differential equations. These sets of equations were then solved in an iterative manner until convergence was achieved. In any iteration, exact closed form solutions were obtained for ODE systems. The most significant feature of the present method is that the iteration procedure is insensitive to the initial guess for the solution and satisfies all boundary conditions in subsequent iterations. Dynamic assessment of orthotropic plates employing EKM requires much less effort than the other approximate techniques, such as the finite element method, because the major portion of the computation is done analytically. Furthermore, convergence was fast, as judged by the number of iterations, which in no cases exceeded three. In this study, a computer code using MATLAB was prepared. Dynamic displacement and the bending moment amplitudes were determined in no

0.2 0.3

0.1

time, and the results obtained for the different cases was in very good agreement with the available published studies.

References

- R. Szilard, Theory and analysis of plates. Englewood Cliffs, NJ: Prentice-Hall, (1974).
- [2] S. G. Lekhnitskii, Anisotropic plates, New York, Gordon & Breach, (1968).
- [3] R. B, Bhat, Natural frequencies of rectangular plates using characteristic orthogonal polynomials in the Rayleigh–Ritz method, *Journal of Sound and Vibration*. 102 (4) (1985) 493-499.
- [4] S. M. Dickinson and A. Di Blasio, On the use of orthogonal polynomials in the Reyleigh- Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates, *Journal of Sound and Vibration*. 108 (1) (1986) 51-62.
- [5] D. J. Gorman, Accurate free vibration analysis of clamped orthotropic plates by the method of superposition, *Journal of Sound and Vibration*. 140 (3) (1990) 391-411.
- [6] S. D. Yu and W. L. Cleghorn, Generic free vibration of orthotropic rectangular plates with clamped and simply supported edges, *Journal of Sound and Vibration*. 163 (3) (1993) 439-450.
- [7] M. Huang, X. Q. Ma, T. Sakiyama, H. Matuda and C. Morita, Free vibration analysis of orthotropic rectangular plates with variable thickness and general boundary conditions, *Journal of Sound and Vibration*. (2005) 931-955.
- [8] R. L. Ramkumar, P. C. Chen and W. J. Sanders, Free vibration solution for clamped orthotropic plates using Lagrangian multiplier technique, *American Institute of Aeronautics* and Astronautics Journal. 25 (1) (1987) 146-151.
- [9] C. Mei and K. Decha-Umphai, A finite element method for non-linear forced vibrations of rectangular plates, *AIAA J.* 23 (1985) 1104-1110.
- [10] A. D. Kerr, An extension of the Kantorovich method, *Quart Appl Math.* 26 (1968) 219-129.
- [11] L. V. Kantorovich and V. I. Krylov, Approximate methods of higher analysis, The Netherlands: Groningen, Noordhoff, (1964).
- [12] R. Jones and B. J. Milne, Application of the extended Kantorovich method to the vibration of clamped rectangular plates, *Journal of Sound and Vibration*. 45 (1976) 309-316.

- [13] R. B. Bhat, J. Singh and G. Mundkur, Plate characteristic functions and natural frequencies of vibration of plates by iterative reduction of partial differential equation, *Journal of Vibration and Acoustics, Transactions of ASME.* 115 (2) (1993) 177-181.
- [14] M. Dalaei and A. D. Kerr, Natural vibration analysis of clamped rectangular orthotropic plates, *Journal of Sound* and Vibration. 189 (3) (1996) 399-406.
- [15] A. N. Bercin, Free vibration solution for clamped orthotropic plates using the Kantorovich method, *Journal of Sound and Vibration*. 196 (2) (1996) 243-247.
- [16] T. Sakata, K. Takahashi and R. B. Bhat, Natural frequencies of orthotropic rectangular plates obtained by iterative reduction of the partial differential equation, *Journal of Sound and Vibration*. 189 (1) (1996) 89-101.
- [17] C. R. Wylie and L.C. Barrett, Advanced Engineering Mathematics, McGraw-Hill, New York, (1985).
- [18] E. Romanelli and P. A. A. Laura, Forced transverse vibrations of a simply supported rectangular orthotropic plate in the case where the force acts over a plate subdomain, *Ocean Engineering*. 28 (2001) 1135-1144.
- [19] R. E. Rossi, R. H. Gutierrez and P. A. A. Laura, Forced vibrations of rectangular plates subjected to harmonic loading distributed over a rectangular subdomain, *Ocean Engineering* 28 (2001) 1575-1584.

Rahbar Ranji Ahmad received his BS degree in Civil Engineering from Tehran University, Iran, in 1989. He then received his MS degree from Technical University of Gdansk, Poland, in 1992 and his PhD from Yokohama National University, Japan, in 2001. Dr. Rahbar is currently an Assistant

Professor at the Department of Naval Architecture, AmirKabir University of Technology in Tehran, Iran.

Rostami Hoseynabadi Hamidreza received his BS degree in Mechanical Engineering from Azad University, Iran, in 2006. He then received his MS degree in Marine Engineering from Malek Ashtar University of Technology, Iran, in 2009.